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I. INTRODUCTION

During the period covered by this Technical Report, considerable advances have

been made in many areas of research under the general title of "Mechanics in Material

Space". These advances are reported under three main headings.

Under the heading of "Conservation laws obtained using Noether's First

Theorem", results for the various non-homogeneous systems considered are obtained via

Noether's first theorem[l], combined with Lie's group theory[2]. The essence of this

approach is as outlined in Section 3 of the proposal that lead to Grant No. 90-0195. This

methodology for constructing conservation laws is applicable only to Lagrangian systems,

and we had applied it to four different Lagrangian systems under the sub-headings of plane

elastostatics, bars, beams and plates.

Under the heading of "Conservation laws obtained using Neutral Action Method",

results for the various dissipative systems, as well as for one Lagrangian system, are

obtained via the Neutral Action method. This new methodology for the construction of

conservation laws has been established with the support from Grant No. 90-0195, and this

achievement has been reported in Section 7 of the progress report submitted for the period

April 1, 1990 through March 31, 1991. Details on this new methodology, which is

applicable to dissipa~tive as well Ls to Lagrangian systems, can be found in the published

brief note[3] attach, as an Appendix. Using the Neutral Action method, results obtained

are reported under ve sub-headings: linear viscoelasticity, non-homogeneous beams,

systems under initial s ss, Sezawa bca.- and fluid mechanics.

Under the hea ng of "Results on General Theory", the results presented dealt with

the compkrison of the wo methodologies for constructing conservation laws, Noether's

first theorem and the Neutral Action method. The connection between the Neutral Action

method and the symmetries of the governing equations for any system of interest was also

established.
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Until the discovery of the Neutral Action method, there existed no systematic

procedure for constructing conservation laws valid for dissipative systems. Since

conservation laws are of great value in the analysis of fracture and defects in these systems,

most of our efforts during this reporting year have been concentrated in developing

conservation laws for dissipative systems using this new methodology. Results in this area

are presented in Section III.

Results presented in Section II and Section IV are follow-ups on the results

reported in the progress report for 1990-1991. Any advances in the areas covered within

these sections, as well as the current status of the relevant manuscripts are described in

these sec 'ns.

During the reporting period a Ph.D. dissertation was completed under the title,

"Conservation laws in non-homogeneous and dissipative systems" by Nelly Y. Chien,

who graduated in June 1992.

II. CONSERVATION LAWS OBTAINED USING
NOETHER'S FIRST THEOREM

1) Conservation laws (an; path-independent integrals) in non-
homogeneous plane elastostatics

As mentioned in the last progress report, previous research by Eshelby[4],

Sanders[5], Rice[6], Giinther[7], Knowles and Sternberg[8] relating to path-independent

integrals (J, L and M) plays a prominent role in the study of fracture mechanics of

homogeneous elastic bodies.

The aforementioned studies are applicable only. to homogeneous elastic bodies, in

order to analyze fracture and defects in non-homogeneous bodies with continuously

varying elastic properties, our study has concentrated in developing conservation laws in

such non-homogeneous materials. Results obtained can be applied to a novel advanced
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material called functionally gradient material (FGM)[9]. These materials are expected to be

used in light-weight structures such as aircraft and to solve problems in the thermal-

protection systems of aerospace vehicles.

Our mathematical apparatus, used in constructing conservation laws for elastic

bodies with continuously varying material properties, relied on Noether's first theorem

combined with Lie's group theory. Using a novel application of this apparatus, we

managed to relate the condition of the invariance of the Lagrangian in Noether's theorem to

a condition relating the elastic moduli. In particular, we extended the classical J-integral to

materials for which Poisson's ratio is constant, while the Young's modulus varies

exponentially or as a power law. This J-integral is path-independent and characterizes the

crack propagation in such materials.

However, we would like to point out that our work has not been exhaustive, since

we restricted it to the so-called geometric symmetries. It is expected that by including

generalized symmetries the class of non-homogeneous materials, for which we can derive

conservation laws, will be enlarged.

A manuscript [Ml]* covering this work has been written up during the reporting

period and will be submitted to an appropriate journal for publication.

2) Conservation laws for non-homogeneous bars

As mentioned in the last progress report, using Noether's first theorem combined

with Lie's group theory, conservation laws were obtained for smoothly non-homogeneous

bars. The non-homogeneity can be due to variable cross-section or to bars formed from

non-homogeneous materials. These conservation laws will prove useful in studying

Numbers in bracket preceded by letter M refer to the list of manuscripts at the end of this report.
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concentrated defects, such as jump discontinuities and cracks in smoothly non-

homogeneous bars.

A manuscript [M2] covering this work has been written up during this reporting

period and has been accepted for publication in Acta Mechanica.

3) Conservation laws for non-homogeneous beams

As mentioned in the last progress report, conservation laws for smoothly non-

hemogeneous Bernoulli-Euler beams as well as Timoshenko beams, has been established

based on Noether's first theorem combined with Lie's group theory. The two beam

theories differ in that the Timoshenko's theory of flexural motions in an elastic beam takes

rotatory inertia and transverse-shear deformation into account and contains two independent

variables instead of the one transverse displacement of the Bernoulli-Euler theory. Both

statics and dynamics of these beam theories are considered in the oerivation of conservation

laws.

Conservation laws are found to exist only for special classes of non-homogeneous

beams. These admissible non-homogeneities are expressible in the form a differential

equation. Given any non-homogeneity of a beam, one only needs to introduce the material

dependence into the differential equation to determine the conservation laws applicable, if

any.

As previously reported, a total of six conservation laws are found for the static of a

Bernoulli-Euler beam, and a total of eight for the dynamics of a Bernoulli-Euler beam.

These laws are obtained assuming that the beam is loaded only at its end.

During this reporting period, conservation laws are obtained for the statics and

dynamics of a non-homogeneous Bernoulli-Euler beam under a continuously distributed

loading. As the non-homogeneities of a beam admitting conservation laws are expressible

in the form of a differential equation, the distributed loading on a beam that admits
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conservation laws is also found to be expressible in the form of a differential equation. A

total of two conservation laws are obtained for the static case, and . total of four for the

dynamic case.

For the non-horogeneous Timoshenko beam, it has been noted in the last progress

report that four conservation laws have been obtained for the static case, and six for the

dynamic case. During this reporting period, two more conservation laws were obtained for

the static case, and one additional for the dynamic case. Also, the class of non-

homogeneities admitting conservation laws has been enlarged.

However, we would like to point out that our work completed to date has not been

exhaustive, since we restricted it also to the so-called geometric symmetries. It is expected

that by including generalized symmetries more conservation laws will be obtained, and the

class of non-homogeneous beams admitting conservation laws will also be enlarged.

A manuscript [M31 covering these results has been accepted for publication in the

International Journal of Solids and Structures.

4) Conservation laws for non-homogeneous plates

As mentioned in the last progress report, conservation l-rws were obtained for

smoothly non-homogeneous Mindlin plate using Noether's first theorem combined with

Lie's group theory. Mindlin's plate bending theory is one that includes the effects of

transverse-shear deformation and rotatory inertia. As in the case for nlon-homogeneous

beams, the non-homogeneity of the plate admitting conservation laws is expressible in the

form of a set of differential equations. Given any non-homogeneity of the plate, and using

this set of differential equations, the applicable conservation laws, if any, can be readily

determined.

It has been noted in the last progress report that a total of four conservation laws are

found for the statics of a Mindlin plate, and a total of six for the dynamics. During this
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reporting period, two additional conservation laws were obtained for the static case and an

additional three were obtained for the dynamics. Also, the class of non-homogeneous

plates admitting conservation laws has been enlarged. These laws are obtained assuming

that the beam is loaded only at its ends.

Conservation laws were also obtained for the statics and dynamics of a non-

homogeneous Mindlin plate under a continuous distributed loading during this reporting

period. Similar to case of a Bernoulli-Euler beam with loading, the distributed loading on a

plate is also found to be expressible in the form of a differential equation. A total of six

conservation laws were obtained for the statics case and a total of four for dynamics.

Also established during the reporting period were some analogues of the

conservation laws relating to the J, L and M integrals in elasticity. These conservation laws

expressed in (he form of path-independent integrals are obtained for the statics of a Mindlin

plate with and without distributed loading. For dynamics with and without loading, the

corresponding conservation laws are expressible as balance laws, where path-integrals are

balanced by the rate of change of volume integrals. These results are applicable in the

analysis of fracture and defects of non-homogeneous plates similar to the J, L and M

integral in elasticity.

However, we would like to point out that our work completed to date has not bt.en

exhaustive, since we restricted it again to the so-called geometric symmetries. It is expected

that by including generalized symmetries more conservation laws will be cbtained, and the

class of non-homogeneous plates admitting conservation laws will also be enlarged.

A manuscript [M4] covering these results has been written up during this reporting

period and will be submitted to an appropriate journal for publication in the near future.

-7-
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III. CONSERVATION LAWS OBTAINED USING THE

NEUTRAL ACTION METHOD

1) Conservation laws in linear viscoelasticity

As mentioned in the last progress report, conservation laws were obtained for one-

and two-dimensional linear viscoelasticity (Voigt model) using the Neut-al Action method.

A conservation law for the one-dimensiunal case reported previously, is that whose

time current can be any function of the total stress and the space current is the negative

derivative of this function times some derivative of the displacement. If one chooses the

unknown function as proportional to the stress squared, one can obtain the results that

shows that the dissipation of ,he elastic stress is being equal to the rate of work done due to

tractions minus the energy dissipation.

In addition to the conservation law mentioned above, two additional ccnservation

laws valid for one-dimensional linear viscoelasticity were obtained during this reporting

period. One of these laws is quite trivial in that it expresses the fact that any function of the

constant stress is also a conserved quantity. The other conservation law expresses a relation

between stress, displacement and velocity that can be obtained by integrating the

constitutive equation of the syster. while taking into account the equilibrium equation.

For the two-dimensional problem, a conservation law that relates the dissipation of

elastic energy similar to that in the one-dimensional case was previously obtained only for

two special cases, namely, a special pure dilatation case and a second case without the

dilatation terms. However, during this reporting period, such a law for the complete

problem was finally obtained.

In addition to the conservation laws which describe the dissipation of energy, a

conservation law without a time current is also available for two-dimensional linear

viscoelasticity as reported previously. Without a time current, this law provides a path-
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independent integral that might be useful in the analysis of cracks Ld A other defects in linear

viscoelastic bodies.

However, we would like to point out again that our work completed to date has not

been exhaustive. By allowing the characteristic of conservation law in the Neutral Action

method to depend on more and higher order derivatives of the dependent variables of the

system, more conservation laws should be obtainable.

A manuscript [M5] covering these results has been rqitten up during this reporting

period and accepted for publication in ZAMP. A marked proof of this paper is attached in

the Appendix.

2) Conservation laws for non-homogeneous beams

During this reporting period, conservation laws were obtained for the statics and

dynamics of non-homogeneous Bernoulli-Euler beams, with and without a distributed

loading using the Neutral Action method.

Since the basic building bloc!k for construction of conservation laws by the Neutral

Action method are the governing equations ot the system of interest, this method is

applicable to dissipative systems without a Lagrangian function as well as to Lagrangian

systems governed by the associated Euler-Lagrange equations.

Even though the problem of non-homogeneous Bernoulli-Euler beams has been

treated previously based on Noether's first theorem combined with Lie's group theory

limited to geometric symmetries, in order to compare the two methodologies for

constructing conservation laws, we applied the Neutral Action method to the same system.

The resulting conservation IE ,vs by the Neutral Action method are shown to not

only encompass all previous results derived for the same system using Noether's first

theorem combined with Lie's group theory utilizing geometric symmetries, but they are

also more numerous and are applicable to a wider range of non-homogeneities and loading.
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A total of eleven conservation laws are obtained for the static case with and without

loading, and a total of fourteen for the dynamic case with and without loading.

The fact tha& conservation laws deriv-d by the Neutral Action method encompass all

previous results obtained using Noether's first theorem combined with Lie's group theory

limited to geometric symmetries, is consistent with the comparison between the two

methodologies. It has been noted in Section IX of the last progress report that, for

Lagrangian systems, the requirement for existence of conservation laws by the NA method

and by Noether's first theorem are mathematically identical. However, as this comparison

is based on the general form of Noether's first theorem admitting an extension by Bessel-

Hagen[ 10] (divergence symmetries), it is expected that the conservation laws obtained here

for non-homogeneous Bernoulli-Euler beams using the NA method to be more general and

to encompass all previous results reported in Section 111-3.

Also, for a conservation law obtained, the Neutral Action method of constructing

conservation laws is shown to be more efficient than the classical method of Noether's first

theorem with its extension by Bessel-hagen. While the condition for existence of

conservation laws by the classical methods requires the use of three unknown functions,

the Neutral Action method uses only one unknown function to arrive at the same

conservation law.

However, we would like to point out that our work completed to date has not been

exhaustive. By again allowing the characteristic of conservation law in the Neutral Action

method to depend on more and higher order derivatives of the dependent variables of the

system, more conservation laws will be obtained, and the class of non-homogeneous

beams admitting conservation laws will also be enlarged.

A manuscript [M3] covering these results has been written up and will be published

in the International Journal of Solids and Structures.
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3) Cons-r ' laws for systems under initial stress

During this reporting period, conservation laws were sought using the Neutral

Action method for linear elastic systems under initial stress. Since structural components

are frequently prestressed or exhibit some distribution of residual stresses, a conservation

law that relates to the energy release rate will be extremely useful in the analysis of fracture

and defects for such components.

Up until the present, no conservation law was yet derived. The difficulties lie in the

generality of the system at hand (the initial stress state being unspecified) and the

determination of the characteristic functions for conservation laws which must satisfy

approximately twenty partial differential equations simultaneously. Ncvertheless, it is

expected that results will be obtained in the near future for some special cases such as

systems under hydrostatic or uniaxial stress.

4) Conservation laws for Seawa Beam

During this reporting period, conservation laws for the Sezawa Beam were derived

using the Neutral Action method. This beam theory is a mfidification of the Bemoulli-Euler

bean theory which incorporates the effects of internal damping. Results obtained indicated

that conservation laws for this system exist only in physical space. As no conservation

laws were found in materials space, a balance law that relates to the energy release rate is

unavailable.

5) Conservation laws for fluid mechanics

During this reporting period, cor,•ervation laws were derived using the Neutral

Action method for 2-dimensional Navier-Stokes equations for an incompressible fluid with

constant fluid density, constant viscosity and in the absence of body forces. Results
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obtainc-d will be most useful in the numerical anaiysis of the sysstem, as well as in providing

irnsights into the behavior of the fluid, both mathematically and physically.

Restolt obtained sc far are still limited. In the general case, a total of four

conservation laws were obtained. These laws do not contain energy terms and they relate

only to the incompressibility of the system. Also, conservation laws were obtained for

cases with special pressure fields, such as linear fields and fields which satisfy the Laplace

equation. The conservation laws in these special cases show a balance of displacement

gradients, pressure gradients and strain rates. The physical interpretation of these laws is

yet to be investigated. The search for conservation laws in tis area is far from complete.

Efforts will be undertaken to obtain additional conservation laws and to interpret their

physical significance, hopefully on the level of energies.

IV. RESULTS ON GENERAL THEORY

Conservation laws and symmetries

As reported in the last progress report, the Neutral Action mcthod for constructing

conservation laws has a relation to the concept of symmetr~es. For each characteristic of a

conservation law by the Neutral Action method, there exists in the adjoint field a

corresponding characteristic for the symmetries of the governing equations for the system

of interest. However, the converse is not true.

Also mentioned in the last progress report is that the Neutral Action method of

constructing conservation laws, when applied to Lagrangian systems, is identical to the

method by Noether's first theorem with Bessel-Hagen's extension. The conditions for

existence of conservation laws of both methodologies can be transformed into identical

form.

During this reporting period, it has been further shown that, within Lagrangian

systems, both conservation laws derived by the Neutral Action method and by Noether's

first theorem with Bessel-Hagen's extension have a one-to-one correspondence to the
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variational symmetries of the Lagrangian functional. This is an additional supporting fact

for the equivalence of both methods when applied to Lagrangian systems.

A manuscript [M61 covering these results has been written up and submitted to an

appropriate journal for publication.
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Appendix

,olume 155. number 4.5 PHYSIC(S LETTERS A 13 Ma, ],;y I

On conservation laws for dissipative systems

T. Honein. N. Chien and G. Herrmann
Di i ivito r Ippltt'd .1th'c/nh i. .Xianti rd U niit'r;l'. Siantf rd, (A 943W1.404o. t . I

"Recec, ed 2 Januar' I 1 accepted for publication 12 March I IN I
Communicated b% J.P. Vigier

In this brief note. a new methodolog, is advanced with the aim of establishing, conseration laws for dissipatve s.stems de-
scribed b% partial differential equations. This methodolog\ extends Noether's c.,ebrated first theorem. wshich is applicable onl,
to s~stems goserned by equations derivable \ariationall. from a Lagrangian. Se' eral simple. wet non-tri% ial. examples serve to
illustrate the proposed procedure.

The purpose of this brief note is to advance and Now let a dissipative system be given by the par-
illustrate a procedure for constructing conservation tial differential equation
laws (i.e.. divergence-free expressions) for dissipa- / ( )=0.
live systems described by partial differential equa-
tions. Such expressions are most useful for a variety where u is the dependent variable.
of reasons. Whereas for non-dissipative systems. Even though this equation may not be derivableJ
which arise from a variational principle. Noether's from a variational principle, still we set
first theorem [I] is available to establish conser-
vation laws in a systematic fashion (cf. a very com- P.

plete presentation and discussion by Olver [2] ). no but nowfis considered not to be pre-determined as
corresponding methodology was known and ex- Q was. but has to be found from the above equation.
ploited for dissipative systems. since these might not We note that since .IA (i) is required to be diver-
"be related to a variational principle and thus Noeth- gence-free. it has to be a null-Lagrangian. and this is
er's procedure becomes inapplicable, the condition which determines f Thus we set

To keep this note short, reference again has to be Y
made to ref. [21 for all details. f6 00

In a non-dissipative system. let L be a Lagrangian and require S/ =0 identically in u in order to find
and E(L)=0 the associated Euler-Lagrange differ- J
ential equation. Based on Noether's theorem it can The generalization of the foregoing procedure to
be shown that if one finds a "characteristic- Q of a a system of partial differential equations is
conservation law (having made use of the underly- straihItforward.
ing symmetry), then the associated conservation law As a first illustration consider the diffusion
may be expressed as equation

Div P=-P; =QE(L)=0. (1u) =i,-eXu,, =0.

The condition 8:/'=0 leads to
where P' (i= I. 2 ..... n) is an n-tuple of functions +a/',, =0
determined by Q. n is the number of independent " "
variables and the subscript indicates total which is. in this instance, the adjoint equation. The
differentiation. associated conservation law is given by

0375-9601/91/S 03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland) 223



Volume 155. number 4.5 PHYSICS LETTERS A 13 .Ma. 199I

P'=a(fu-fi, . = and with
a":= )'E.

As a second illustration consider the nonlinear
%a'.e equation we may obtain

A(u)=u:--i, =0. d eT
dt 21

The condition 6-/ =0 leads here to
which has an immediate ph.sical interpretation and

.t- utf =.0 is a useful result.

and !o a class of conservation laws with It is quite remarkable that the methodology ad-
SiI, , vanced in this note has not been exploited earlier.

P'= -C t +X Indeed. the tools to establish our procedure are all
/ available (cf. relf [2]. proposition 5.33)--l but they

, U, t"have been used to construct a machinery whose pur-
P'=C t n+. + Vj. pose is different from the one herein presented.

It is seen that the procedure to construct conser-
where n is any real number except -2. -1. 0. and vation laws adanced here. has led to novel results.

C is an arbitrary constant. Further aspects of the methodology presented here
Lastly. consider linear viscoelasticity in the form will be discussed in forthcoming papers.

A (Ut) = )U, +lil,, =0. This work was performed with the support of the

Here Y is Young's modulus. tl the viscosity ofa Voigt AF Office of Scientific Research and the U.S. De-
element. The stress ca is related to the displacement partment of Energy. This support is gratefully ac-
u by knowledged. The authors would like also to thank

Professor P. Olver for many valuable discussions.ar Y'u, +7/ut, 1 .

One possible conservation law may be obtained as ' It is rclevant to note here that we became aware of proposition
5.33 after our work w.as completed.

Pl=g(a).

'=- -g'( Yu,+qa, References

where g(a) is arbitrary. [I] E. Noether. In'.ariante Variationsprobleme. Nachr. K. Ges.

If we choose g(a) =(7
2 /2 K with Wiss. Gottingen. Math.-Ph~s. KI. (1918) pp. 235-257 [Engl.

transl.: Transp. Theory Stat. Phys. I (1971 ) 1861.

P" + P, =0 12 P.J. Oler. Applications of Lie groups to differential equations
S .. (Springer. Berlin. 1986,.
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Z angew Math Phys 44 (1993) W044-227519,l030405-j7 S 1.50 + 0.20
(ZAMP) t9 I9 Birkhiuser Verlag. Bascl

Conservation laws for linear viscoelasticity

By N. Chien, T. Honein, and G. Herrmann, Division of Applied Mechanics,
Stanford University, Stanford, CA 94305-4040, USA

1. Introduction

Since the introduction of the J, L, and M integrals in fracture mechan-
ics, the importance of path-independent integrals has been widely recog-
nized. These path-independent integrals are conservation laws of a
divergence-free form in material space. Classically, conservation laws are
obtainable through Noether's first theorem [2], with extension of Bessel-
Hagen [1]. However, Noether's approach presupposes the existence of a
Lagrangian function for the mechanical systems considered, and since
systems with damping and various other dissipative mechanisms do not

* possess Lagrangian functions, Noether's theorem cannot be applied to
dissipative systems. % %.-e% e.A

In a recent brief note-__J"On Conservation Laws for Dissipative
Systems" (4], a new approach for constructing conservation laws was
proposed. Given a system governed by a set of differential equations, the .. Q A)%
proposed procedure, termed thel',;ut..l Aci (NA) Mthz^', in- [5]9
allows one to systematically construct the divergence-free quantities applica-
ble to the system considered.

It is the purpose of this present contribution to derive conservation laws
valid for one- and two-dimensional linear viscoelasticity (Voigt model)
using the proposed method. The results presented are not exhaustive, but as
a limited set, these laws should prove useful in the analysis of defects and
fracture in linear viscoelastic material.

2.T ..e..(NA) method

Given any system with m independent variables x' (i = 1, 2,.... , m), n
dependent variables u0 (k - 1, 2,.... , n), the governing equations can be
represented byt€x, k, k•)=o.(
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Using the multi-index notation introduced by Olver [31, u.J in equation
(1) represents all possible pth order partial derivatives of u',

axI' ax I'- " • • ax"'
with J = (j, j2,,' ... j,) as an unordered p-tuple of integers, I <J. <- mindicating which derivatives are being taken, and # J--- lindicationt howmany derivatives are being taken. ,',,..

For any system governed by a set of differential equations as in equation(1), the t'Neutral Action (NA) Method"I proposed in [4] states that it is t'-4'o- A.-,,possible to construct conservation laws valid for the system in the form of ' , .,...

, 0,, D.,, • ., •(2)
if

, HereL'=f'(x•,u",ut)are the unknown characteristics of conservation
laws, and E* is the Euier operator defirned as

93LEkL) D)-'-• o < # J <-C P, (4)
ou,

with

representing all possible pth order total derivatives, and
"(-D)= DI for # J =even,

f• or # J = odd.
Since our objective is to construct some divergence-free expressions out0 ' and since the Euler operator acting on any total divergence always/--gives a null result by alculus of variation, it foWows that equation (3) is a
rqieaet fo estnce ocnsration laws. Equation (3) also implies

tha~t f' is a null La gi~ hs action integral,

CC.
A = J4f ,d, .• (5)

has vanishing variation for any dependent variables u*,LiVIn other ",-, ,words, in order to construct conservation laws for any system (dissipativeor Lagrangian) governed by a set of differential equations| = 01,by the NA &A
method, we try to construct a product o_ whose action inteoral does no-
change variationally. Hence the name CNeuMethod' given to
this procedure.

I-t
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In practice, given any set of differential equations, one only needs to
solve equation (3) for the unknown characteristicsf and then proceed to
construct the conserved currents P' valid for the sys- n governed by this set
of differential equations. K.

3. One dimensional linear viscoelasticity

Conservation laws derived for I-D linear viscoelasticity were given as an
example in the brief note "On Conservation Laws for Dissipative Systems"

[4] to illustrate the construction of conservation laws via the NA method.
For completeness of the present paper, these results will be presented again
in this section with some additional details.

The governing equation for I-D linear viscoelasticity (Voigt model) is
given by

" A - Yu"+ -[ u 0 i(6)

"where Y is bural o 's modulus, 1jithe viscosity c ent of a Voigt
element, x and t the spatial coordinate and time, and u tie displacement for
the system. Stiissripts[*. indicatedifferentiation.

7The stress a of this syst im is related to he displacement u by

SYu +. u,,. . .- (7)

If one o the variables in this system such that

, = '+•u, (8)

the governing equation of I-D linear viscoelasticity can be written as

= 4= 0=0. (9)

Assuming the characteristic of conservation laws for the system to be

f =f(,, 0. . (10)

the condition for existence of conservation laws, equation (3), by the NA
method will require that S

.~b .Ef)••k,-D.( 'f-)t•,-D, €'.- +Dx.(f)[0 (11)

Since the only unknown in the above equation is the characteristic f
which depends on 4, .,, and 0,, it follows that all coefficients of second and

. -.. . . . . \ ;. , -
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higher order derivatives of • in this equation must be set equal to zero
independently. The resulting set of equations is as follows:

coefficient equation
equation - s,

o42 b ' rock. e" o

SzI ,, a€ ' .=

Lf a 2f aof•.= ~ ~ + j-a a #,•,aa . = 0

remaining 2 = 0. (12)

After some mathematical manipulatiovs, the solution of the above set of
equations is found to be

f=f (0. )0, +fp() + COO; 2 . (13)

Since f' and f 2 are arbitrary functions of 0., it is permissible to rename
them as

Sf2 (4).,) = h'(x), (14)

with ( )" denoting differentiation with respect to the argument. Defining f'
and f 2 as such will allow the conservation laws derived to have a simpler
appearance.

With

f= - + h'(O.) + C4O;'2, (15)

-- r and

A = •.,(16)

it is possible to construct divergence-free expressions, D,,P + D,P'= 0, out
of the product of f and A. The resulting conservation law is

-= -g'(P)., + h(,.) - c - x(7

P' =)

N

/,/

S • . ... . . : _ -. .;;i 
- ". , ,
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Since the stress, a = , of this system is constant with respect to x, the
conservation law pertaining to only h(O.) o 0,

P' =h(O.;) = AI (t), (8

implies that any function of the constant stress is a constant with respect to
x, where A1(t) is an arbitrary function of time.

With a c= 0, = ,, the conservation law corresponding to C #0 can
be rewritten as -o -.-

P 0 = - xO. = A2(), (19)

where A,.t) is an arbitrary function in t. In terms of stress and displacement,

P" = Yu + J7u, - xCF = A,(t). (20)

This law expresses a relation between stress, displacement and strain-rate ------
which can be obtained by integrating the constitutive equation of the system
while taking intb account the equilibrium equation.

In terms of stress, the divergence-free expression that pertains to only
g(q,) # 0 can be writtten as

PT= g [() dx,

"t (21)P'-g(a),

where g is any function of stress.
If one chooses g(a) = oa2/2Y, and denotin the elastic component of

stre and the strain rate v , = u,,, this particular
conservation law can.be.written as

D,( ) = oc, - (22)

whose physical interpretation is that the dissipation of elastic energy

(a°2/2 Y) is equal to the rate of work done due to tractions (oa,) minus the,

energy dissipation (;7c-,).
Additional conservation laws for l-D linear viscoelasticity can be ob-

tained by assuming different dependence of stress in the function g(o).

4. Two dimensional linear viscoelasticity .

Denoting the normal stresses in the x and y direction as a- and ao, the
shear stress as 0z7, the equilibrium condition for any 2-D continuum
mechanics problem is given by

,' -c 1' +u O (23)
A2  a y. + -'Y -0.

Y
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For linear viscoelasticity, the stress components are e--' ted to the
normal strains in the x and y direction (&", Y") and the shear strain (&')) by

"- = (2 + 2,,),x" + A.s- + (a + 2g)ex + atv',.

S-(2 + 2pu)e-' + 2a + (a + 29)E" + a&-T, (24)

where 2 and u are the Lame constants, a and # the viscosity coefficients of
the system.

With u and v being the displacements of the system in the x and y
directions, the strain components are given by

, .- v,, (25)

"* .2 (•£x7 , +.v,).
Combining the above equations, the two governing equations for 2-D

linear viscoelasticity in terms of displacements are

6' = (. + 2u)u, + Au", + (2 + u)v,

+ (a + 2fl)u`,, + flu,, + (a + #)V,.y,

A' = 9. + 2pu)v,, + .w1 x + (A + p)u., (26)

"r / + (a + 20)v,,, + fv., - ( + +

Given the governing equations for the system, the condition for exis-
tence of conservation laws by the NA method, as given in equation (3), is

LE(f'At +fA 2 )= 0.,--- Eý ('E ' .- _- .o (27)
-7i--eso contain third derivatives in u and v, in order to evaluate this

-- condition ýexistence, one needs to compute the third total derivative of
47i ~ -fs. • If one assumes some characteristics that depend on x, y, t, u, v and also

on derivatives of u and v, calculating .he third total derivatives o ould
be virtually impossible in the absence of advanced computing devices with
large mcmory capacity. Due to this difficulty in evaluating equation (27),
the general solution for the characteristics is yet unknown. However,
particular solutions may be found heuristically.

By restricting the dependence ofld~to x, y and t only, the condition for
existence of conservation law by the{ NA method, equation (27), requires
that7 fL +f/', 4 o, (23)

fj+f~ ,=--

: "~A 7- .)-
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wherelCj()Jw is an arbitrary func.,ion of t. The corresponding conservation
law is Az.-t)

pX =f'a" +f~a" -f.[(. + 2p)u + (a + 2fl)u,]

P" =f'a"' +-fo" -f[X.[v + av,] -f"[pu + fu,]

-fý.(pu + fu,] -f/[(. + 2ju)v + (a + 2ft)v,.

P' =--O. - (29)

wvheref' andfJ'- are functions satisfying equation (28).
If f',f" are taken to be constant, the above conservation law expresses

the condition of equilibrium for the system. Due to the absence of a time
current, equation (29) provides path-independent integrals in the material

c!-• 'pac which might be useful in numerical analysis of cracks and defects for
2-D ýiscoelastic material. ' -

,-- servatfi law that relates dissipation of estic energy for 2-D linear
p. *,i¢•'o viscoelasticity can be constructed if oneiconsidere a special case where the

€ t"" Lam6 constants (., u) and viscosity coefficiets (a, fl) are related by

pa = A#i, co,', ', er. (30)

which implies that

- •(31)

One solution for existence of conservation laws in this special case is
given by

= AMyu, + u,,],

f2 = Aiy,, + v,,1, (32)

and the corresponding conservation law . r.__AS
o.• + U,.)OZ + (7V, + v1,,)c,"

=P = A[(YU, + v,,)a0' + (7u, + u,)LI],• .

' -- 2 ((a + 2l)((yu. + u.,)' + (yv, + v,,)" (33)

+ fi[(Yu, + u,.) + (,V. + v.')2]f(•°+ 2a(yvy + v', v,,X.u. + u.,) + 20(.•v + v,)(yu + u,,)].

t. e-oting the elastic energy of the system as
W.= 41.,.o, (34)
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where W is the strain energy density given by

W 1O"•, .o -(35)

the conse,,ation o r this special case of p = ,.fi can be written as

Di [W'] = c-'z, + a':+," (a +r'e 2 E + l,.Y2)
•..,/2=' .>•,.zyy -- 4fla~z (36) -- -••

which expresses the balance between dissipation of elastic energy, rate of
work done due to tractions and the total energy dissipated forf"]special 2-D
viscoelasticity problem.

The balance law for the special 2-D viscoelasticity problem where
pot= ,i, equation (36), can be verified to hold also in the general case
without any restraint on the Lam6 constants and viscosity coefficients. The
conservation law that would yield this result is found to be

P1 = A[u,a-" + v,ad" + ualx + va;']

FY = A '[v, ay" + ua•' + vayy + ualr'] (37) /
P' = - A [2 W + (cc + 2t) (u, .,, + ^ •:) + a(v, u,, + .. o:,)

+ fi(uyu,, + vXVX, + v~uX, + uv1 )AV. M.- R_-v•

Within the framework of the Neutral Actio r(ýeo ,equation (37) can be
e, ' obtained if oneTmodifiedl the condition for existence of conservation la as

given by equation to

In which case, the co esponding characteristics are

f'-u, g'-u9 -. (39)
f 2 =u, g 2 =v.

5. Conclusions

In this present contribution, conservation laws are presented for one-
and two-dimensional linear viscoelasticity. These diveLrence-free expressions
are obtained using the Neutral Action (NA) Me•_.•tg applicable for con-
structing conservation laws for dissipative systems (41. 4zetýb

For I-D linear viscoelasticity, the non-trivial conservation laws obtained
took a very general form. The conserved current in time can be any function
of the total stress, and the conserved current in space is the negative
derivative of this function times some derivative of the displacement. If one

i
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chose knrnow "nrction to be proportio I to the stress squared, the re-
su~tng onsrvatio law shows balance o the dissipation of elastic energy

and thje train rate of the system. Obviously, more conservation laws can 'be
u_,Istructeg y assuming diffe~ent dependences of stress .in the unknown

el function.
In 2-D linear viscoelascticity, the conservation laws obtained are not as

*general as in the 1-D case. For the general and a special case of the 2-D
problem, conseration laws are constructed to show the balance between the
dissipation of energy and rate of work done parallel to the l-D
Also, it is found that conservation laws without the conserved, time current

d exst hic provide path-independent integrals tbat might be useful in
.~, -~~A analysis ot cracks and other defects in linear viscoclastic material.

The conservation laws derived here are not exhaustive. If one allows the
characteristics of conservation laws to be functions of higher'ie~ri~v~ativ=s of
the dependent variables, more conservation laws can be obtained. In lack of
an advanced coinputing device with large memory capacity which, is neces-
sary to solve for high dependence characteristics, the conservation laws
presented here are limited. However, as a limited set, these laws are
non-trivial results for viscoelascity and they serve as examples on applica-
tion of the Neutral Action M
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